智思教育

GRE数学中个位数规律中的障眼法

来源:原创作品 | 2019-09-24371

很多同学在平时练习GRE数学题的过程中经常会碰到考察指数个位数规律的题目。很多同学也能熟练地运用,比如能随口说出3的n次方的规律是3971,8的n次方的规律是8426等等。但是!在考试中还是有一些...

很多同学在平时练习GRE数学题的过程中经常会碰到考察指数个位数规律的题目。很多同学也能熟练地运用,比如能随口说出3的n次方的规律是3971,8的n次方的规律是8426等等。

但是!在考试中还是有一些题目会让熟悉这个规律的同学做错题目,这类题目就是看似是在考察个位数规律,实际上并不是。

接下来,我会用几个例子来帮助大家分析。

1

3的283次方除以5的余数是多少?

【机经回忆版】

解析:除以5的话,因为十位和十位数以上的数字肯定能被5整除。

所以这个时候只需要看个位数即可,3的283次方按照之前的规律看的话个位数应该是7,所以除以5余数一定是2。


2

2的32次方除以3的余数是多少?

【机经回忆版】

解析:很多同学看到例2的时候就直接去复制例1的做法,totally wrong!因为一个数字除以3不能只看个位数,比如13,23,33除以3的话完全是3个不同的情况。

所以这个题要用其他方法,比如这个题可以用找规律的方法:2的1次方,2的2次方,2的3次方,2的4次方除以3的余数分别是2,1,2,1。

而且往后面继续列举的话依然是这个规律,所以2的32次方除以3的余数就是1。

方法二

真经GRE

或者用二项式定理(很多同学都会,但是理论上是超GRE考试纲要的),写成(3-1)的32次方,然后展开之后前面的项全是3的倍数,最后剩一个项1就是余数。

3

3的64次方除以8的余数是多少?

【9月20日机经回忆】

解析:这个题依然可以找余数规律:3,1,3,1无限循环,所以余数是1。

也可以用二项式定理,先转化成9的32次方,然后变成(8+1)的32次方,然后和例2同理,前面的项都是8的倍数,最后剩一个项是1,所以余数是1。


总结:能不能直接用个位数规律要看除数是几,一般除数是2,5的话可以用,其他的话一般不能直接用个位数规律。


智思教育提供,我们针对基础不同,提供各种GRE培训班,帮你快速提分!

版权及免责声明
1、如转载本网原创文章,请表明出处;
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与智思教育联系,电话:021-64325600。

内容推荐

学员成绩提升率100%,满意度99%
全国校区
params['xiaoqu'])['address']?>
咨询热线:021-64325600
课程咨询
北美标化提分站
咨询热线:021-64325600